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Abstract

Background

Invasive lobular carcinoma (ILC) comprises approximately ~10—-20% of breast cancers. In gen-
eral, multifocal/multicentric (MF/MC) breast cancer has been associated with an increased rate
of regional lymph node metastases. Tumor heterogeneity between foci represents a largely
unstudied source of genomic variation in those rare patients with MF/MC ILC.

Methods

We characterized gene expression and copy number in 2 or more foci from 11 patients with
MF/MC ILC (all ER+, HER2-) and adjacent normal tissue. RNA and DNA were extracted from
3x1.5mm cores from all foci. Gene expression (730 genes) and copy number (80 genes)
were measured using Nanostring PanCancer and Cancer CNV panels. Linear mixed models
were employed to compare expression in tumor versus normal samples from the same
patient, and to assess heterogeneity (variability) in expression among multiple ILC within an
individual.

Results

35 and 34 genes were upregulated (FC>2) and down-regulated (FC<0.5) respectively in
ILC tumor relative to adjacent normal tissue, q<0.05. 9/34 down-regulated genes (FIGF,
RELN, PROM1, SFRP1, MMP7, NTRK2, LAMB3, SPRY2, KIT) had changes larger than
CDH?1, a hallmark of ILC. Copy number changes in these patients were relatively few but
consistent across foci within each patient. Amplification of three genes (CCND1, FADD,
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ORAOQVT1) at 11913.3 was present in 2/11 patients in both foci. We observed significant evi-
dence of within-patient between-foci variability (heterogeneity) in gene expression for 466
genes (p<0.05 with FDR 8%), including CDH1, FIGF, RELN, SFRP1, MMP7, NTRK2,
LAMBS3, SPRY2 and KIT.

Conclusions

There was substantial variation in gene expression between ILC foci within patients, includ-
ing known markers of ILC, suggesting an additional level of complexity that should be
addressed.

Introduction

Invasive lobular carcinoma (ILC) accounts for approximately 8% to 14% of all breast cancers
with a predilection for multifocal (MF) and multicentric (MC) distribution and for bilaterality
[1]. The largest study of multiple breast lesions (n = 8935, including lobular and ductal histol-
ogy), reported the incidence of MF carcinoma, defined as the presence of multiple tumors
within the same quadrant of the same breast, at 15.5% [2]. The same study reported the inci-
dence of multicentric (MC) carcinoma, defined as multiple tumors in different quadrants of
the same breast as 5.2%. Given the lower frequency of ILC compared to invasive ductal carci-
noma (IDC) and the lower frequency of MF/MC compared to unifocal breast cancer, there is a
dearth of data on molecular/genomic aspects of MF ILC specifically, with most studies focusing
on either MF/MC versus unifocal carcinoma or lobular versus ductal histology. A study of 812
patients with ipsilateral invasive breast cancer reported 7.6% patients with lobular histology,
17.4% MF/MC and 2.1% (17/812) of patients with MF/MC ILC [3]. Additionally, the origin of
MF breast cancer is unclear, plausible explanations include intramammary spread from a single
primary tumor or alternatively, tumors arising from separate progenitor cells [4].

The characteristics and lack of molecular data in MF and ILC subtypes leads to a conun-
drum: The vast majority of ILCs are of lower histological grade, express estrogen receptor (ER),
lack HER2 overexpression/gene amplification, and fall into the Tuminal’ molecular subgroup,
[1, 5, 6] characteristics associated with higher survival rates and relatively low recurrence rates
[7-10]. Conversely, MF breast cancer is associated with an increased risk of regional lymph
node metastases, increased risk of local relapse and worse outcome [11-14]. Stratification by
intrinsic molecular subtyping in a study of 444 consecutive invasive breast cancer patients,
showed that within the luminal A subtype (associated with higher survival rates), multifocal
luminal A patients (n = 79) had significantly worse survival than unifocal luminal A (n = 212)
patients and multifocal luminal B patients (n = 13) had significantly worse survival than unifo-
cal luminal B patients (n = 29) [15]. The survival analyses were not further stratified for lobular
and ductal histology within the luminal subgroups.

In this study we provide a high level molecular characterization of multiple foci from eleven
patients with ER-positive, HER2-negative MF/MC ILC, herein referred to as MF ILC. Using a
gene expression panel of 730 known cancer genes (606 genes from 13 canonical cancer path-
ways and 124 cancer associated driver genes), and a gene copy number panel of 80 known can-
cer genes, we examined the extent to which the genomic architecture varies between multiple
foci in patients with ILC and between MF ILC and adjacent normal tissue at the level of indi-
vidual genes and pathways. Our study design included multiple punches from each focus. This
design allowed us to examine gene expression and gene copy number in this rare group of
patients at the level of differences between ILC foci and adjacent normal tissue; intra-tumor
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heterogeneity; and the overall level of tumor-tumor variability (heterogeneity) within a patient
relative to variability between tumors from different patients that is not attributable to intra-
tumor variability.

Methods
Patient population

Genomic profiling was performed on eleven patients with invasive lobular MF breast cancer.
Three x 1.5mm cores were punched from FFPE blocks of each primary focus by an experienced
breast pathologist (XG), who selected areas that were >70% tumor cells in order to minimize
the potential effect of differences in tumor versus stroma content. For patient 1, cores were
punched from two lobular multifocal lesions in the right breast and one lobular unifocal lesion
in the left breast; for all other patients the multiple lesions were in the same breast. 1.5mm
cores were available from adjacent normal breast tissue in seven of the eleven multifocal
patients and normal breast tissue from an additional six patients with other breast cancer
subtypes.

All 11 patients and their foci were positive for ER and negative for HER2 by immunohis-
tochemistry (IHC), while three patients were discrepant for PR status (Table 1). All tumors were
confirmed by our pathologist (XG) as ILC pathology. All tumors with the exception of one were
IHC negative for E-cadherin. One tumor (patient 7, tumor 1 was weakly positive for E-cadherin,
detailed in S1 Fig). Patient material and clinical characteristics are summarized in Table 1.

Ethics Statement. All breast tumor samples were collected between 2012 and 2014 accord-
ing to a protocol that was reviewed and approved by the Mayo Clinic Institutional Review
Board under protocol 13-009696. The review board approved waiver of the requirement to
obtain informed consent in accordance with 45 CFR 46.116. Patient records/information were
anonymized and de-identified prior to analysis.

RNA and DNA extraction

RNA and DNA were extracted from each 1.5mm punch with the Qiagen AllPrep FFPE kit as
per the manufacturer’s instructions, with the exception that proteinase K digestion times at
65°C were extended to overnight, as previously described [16].

Gene expression data

Gene expression on the NanoString® platform was assessed with the NanoString PanCancer
Pathways panel of 730 genes designed to capture the activity of thirteen canonical hallmarks of
cancer pathways (606 pathway genes: Notch, Wnt, Hedgehog, TGFB, MAPK, STAT, PI3K,
RAS, Chromatin modification, transcriptional regulation, DNA damage control, cell cycle and
apoptosis), 124 cancer associated driver genes and 40 reference genes. 100ng of each total RNA
sample was prepared as per the manufacturer’s instructions under the high sensitivity protocol.
Gene expression was quantified on the NanoString nCounter™ and raw counts were gener-
ated with nSolver™. Raw counts were normalized against 36/40 reference genes, selected to
have the least variance with the geNorm algorithm [17].

Normalized gene counts and raw data (RCC) files are available at GEO (accession number
GSE79058).

Gene copy number data

Gene copy number on the NanoString platform was assessed with the NanoString Cancer
CNYV panel (version 1, average three probes/gene). 500ng of DNA were prepared as per the
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Table 1. Patient material and clinical characteristics.

Patient Age/Sex/ Focus Distance ER PR HER2 E- Location  Histology/ TNM Final Grade ALND, Genomic  Adjacent
Race, Primary size/ between cad subtype stage Stage # pos data normal
surgical cm foci/cm LN available
treatment

1 44 | F | White 4.0 >4.0 + + - - Right Lobular/ T2 lne 1 yes, yes yes
uoQ classic N3a right,
MO 23/25
R MRM and L 1.8 + - - - Right Lobular/ T2 1 yes
total LOQ classic N3a
mastectomy MO
1.0 + + - Left UOQ  Lobular/ T1b 1 yes
classic NO
MO
2 61/F /White 35 2.7 + - - - Right Lobular/ T2 lne 2 yes, 7/ yes yes
uoQ pleomorphic  N2a 18
MO
R mastectomy 1.5 + + - - Right Lobular/ T2 1 yes
with ALND uoQ classic N2a
MO
1.0 Right Lobular/ T2 1 no
uoQ classic N2a
MO
0.5 Right Lobular/ T2 1 no
uoQ classic N2a
Mo
3 66 / F / White 5.0 14 + + - - Right Lobular/ T2 1B 2 yes, 1/ yes
uoQ/ pleomorphic  Nia 25
midline MO
R mastectomy 1.4 + + - - Right UIQ  Lobular/ T2 1 yes
with ALND classic N1a
MO
4 87 / F / White 6.5 >3.0 + + - - Right Lobular/ T3 1A 2 yes, 1/ yes yes
uoQ alveolar N1a 23
MO
R mastectomy 1.4 + + - - Right Lobular/ T3 1 yes
with ALND LOQ classic N1a
Mo
5 66 / F / White 25 35 + + - - Right Lobular/ T2 NO 1A 2 no yes
uoQ pleomorphic ~ MO
R lumpectomy 2.2 + + - - Right Lobular/ T2 NO 2 yes
and SLNB uoQ pleomorphic MO
6 56 / F / White 2.0 3.0 + + - - Right Lobular/ Tic 1A 1 no yes yes
uoQ classic NO
MO
R mastectomy 1.2 + + - - Right Lobular/ Tic 1 yes
and SLNB uoQ classic NO
Mo
7 65/ F / White 1.2 11.0 + + - +* RightUlQ Lobular/ Tic 1A 1 no yes yes
trabecular NO
MO
bilateral 0.8 + + - - Right Lobular/ Tic 1 yes
mastectomy uoQ classic NO
and SLNB MO
(Continued)
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Table 1. (Continued)

Patient Age/Sex/ Focus Distance ER PR HER2 E- Location  Histology/ TNM Final Grade ALND, Genomic  Adjacent
Race, Primary size/ between cad subtype stage Stage # pos data normal
surgical cm foci/cm LN available
treatment

8 68 / F / White 2.0 13.0 + - - - Left LIQ Lobular/ Tic 1A 1 yes, 2/  yes
classic N1a 10
MO
L mastectomy 1.5 + + - - Left UOQ  Lobular/ Tic 1 yes
with ALND classic N1a
MO
9 67 / F / White 3.2 25 + + - - Left UIQ Lobular/ T2 nc 2 yes, 11/ yes
pleomorphic  N3a 33
Mo
L mastectomy 1.0 + + - - Left UIQ Lobular/ T2 NO 1 yes
with ALND classic MO
10 60/ F / White 6.0 3.0 + + - - Right LIQ  Lobular/ T3 nc 2 yes, 14/ yes yes
pleomorphic  N3a 24
MO
R mastectomy 0.7 + + - - Right Lobular/ T3 2 yes
with ALND LOQ pleomorphic  N3a
MO
0.3 Right Lobular/ T3 2 no
uoQ pleomorphic  N3a
MO
11 73/ F / White 4.5 1.5 + + - - Ul and Lobular/ T2 1B 2 yes, 2/ yes yes
uoQ pleomorphic  N1a 24
MO
R mastectomy 0.6 + + - - Right Lobular/ T2 2 yes
with ALND central pleomorphic  Nia
MO

Abbreviations: MRM, modified radical mastectomy; UOQ, Upper outer quadrant; UIQ, upper inner quadrant; LOQ, left outer quadrant; ALND, Axillary
lymph node dissection; SLNB, Sentinel lymph node biopsy.
* Weakly positive. This tumor was dominant classic lobular, with some mixed trabecular pattern.

doi:10.1371/journal.pone.0153411.t001

manufacturer’s instructions (Alu digest and high sensitivity protocols). Copy number was cal-
culated within the nSolver software (NanoString). Briefly, the NanoString Cancer CNV panel
contains 2-3 probes in each of 80 known cancer genes and 54 invariant control probes used for
normalization. Copy number was estimated as twice the ratio of the average probe count per
gene in each patient to the average probe count per gene in a set of 16 adjacent normal punches
extracted with the same protocol as the multifocal tumors (seven of which were from the multi-
focal ILC patients marked in Table 1 and nine punches from adjacent normal waste tissue of
patients with other types of breast cancer).

CCND1 amplification identified on the NanoString platform was validated with quantitative
PCR (qPCR). Reactions were performed in duplicate with 20ng gDNA, TagMan Universal
PCR master mix, RNase P primer/ probe (4403328), and the CCNDI primer/probe set (Life
Technologies). Amplification data were collected with an Applied Biosystems Viia7 sequence
detector and analyzed with ViiA 7 RUO software. CT values were normalized to control RNase
P, and abundance was calculated using the AACT method [18]. Copy number gains in individ-
ual tumor samples were calculated relative to copy number in adjacent normal tissue from the
same patient.
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Statistical analyses

Differential gene expression and heterogeneity analysis. Linear mixed models were used
to assess between-tumor heterogeneity and difference in expression between foci and adjacent
normal tissue. Normalized gene expression on the log (base 2) scale was the response variable.
All models included both patient and tumor random effects. Tumor heterogeneity analyses
included tumor grade (which correlated with lobular subtype: classic, pleomorphic, trabecular
or alveolar) as an additional fixed effect. Fold change was estimated for the comparison of
tumor versus adjacent normal analyses.

When conducting the heterogeneity analyses, the restricted maximum likelihood approach
was used for model fitting to allow estimation of three standard deviation parameters for the
three sources of variability: patient (op), foci (o), and punch (oyr). Using data from three
punches for each tumor, we define the intra-tumor variability, as HET.IT = orr’/ (orr>+ o+
0p>) x 100%. We define the within-patient between-foci heterogeneity, as HET.F = o/ (o2 +
o>+ 0p°) X 100%. This is the variation among foci from the same patient (o8%) expressed as a
percentage of the total variation: the sum of the intra-tumor variability (ot), the within-patient
variability (05%) and the patient to patient variability (op*). Similarly, we define the between
patient heterogeneity, as HET.P = op?/ (0112 + 02+ 0p2) x 100%.

Likelihood ratio tests were used to test the null hypothesis, Hy: HET.F = 0, or equivalently H:
or = 0. Two approaches were used to account for multiple testing for all of these analyses: Holm
adjusted p-values,[19] and false discovery rate (FDR) estimates, q-values, obtained via the Benja-
mini-Hochberg approach.[20] Statistical analyses were conducted with R version 3.0.2.

Differential gene pathway analysis. Pathway dysregulation was scored for each focus in
thirteen canonical cancer pathways[21] within the NSolver software (NanoString) using Princi-
pal Component (PC) analysis with adjacent normal tissue as the baseline reference. Data for each
pathway were scaled before taking the first PC by dividing each gene’s log2 expression values by
the greater of either their standard deviation or 0.05. Using the pathway scores calculated in nSol-
ver, we performed differential expression analysis using the same regression model as in the
gene-level differential expression analysis. These regressions were used to calculate a p-value for
the association of each pathway of tumor versus adjacent normal tissue. Global significance sta-
tistics were also calculated for each pathway by measuring the cumulative evidence for the differ-
ential expression of genes in a pathway. For MF ILC tumors, global significance of each pathway
was calculated as the square root of the pathway’s average squared t-statistic. Global significance
for each pathway was then plotted against linear association pathway scores.

Results

Differential Gene Expression between ILC tumors and adjacent normal
tissue

Several studies report worse outcome of multifocal relative to unifocal breast cancer, [11-15]
and some evidence (although limited) suggests that multifocal breast cancer results from intra-
mammary spread from a single primary tumor [22-25]. Under this scenario, we hypothesized
that potential prognostic markers of MF ILC would be common to both foci, in which case
they could be identified by differential expression analyses between all tumors within our MF
ILC sample set and adjacent normal tissue. Hence, using the Nanostring PanCancer pathways
panel, we first compared gene expression of 730 known cancer genes in multiple ILC foci of 11
patients to adjacent normal tissue from 7 of those patients.

Amongst the 730 genes tested, (S1 Table) there was evidence of differential expression
(unadjusted p<0.05) in tumor relative to adjacent normal tissue for 253 genes with an
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estimated false discovery rate (FDR) of 14%. The expression in ILC tissue was estimated to be
two or more fold that of adjacent normal tissue for 73 of the 253 genes, and to be less than half
(FC<0.5) that of expression in normal tissue for 60 of these genes. 34 genes were significantly
down-regulated (FC<0.5) with q<0.05, nine of which (FIGF, RELN, PROM1, SFRP1, MMP?7,
NTRK2, LAMB3, SPRY2, KIT) showed larger fold changes (0.06 to 0.26) than CDH1 (0.28),
which encodes for E-cadherin, the loss of which is a hallmark of ILC. COL11A1 and PKMYT]I
showed the highest fold change of genes that were significantly up-regulated (with q<0.05)
with FC of 25.0 and 11.7 respectively. Differentially expressed genes with FC>2.0 or 0.5 and
q<0.05 are shown in Table 2. Results for all 730 genes are shown in S1 Table.

Differential Pathway Expression between ILC and adjacent normal
tissue

We used two different statistical approaches to assess significance of 13 canonical cancer path-
ways in ILC tumors relative to normal adjacent tissue (Fig 1A). Firstly, we scored each sample
for pathway dysregulation and performed differential expression analysis of these scores to
measure association of each pathway in ILC tumor (plotted as-log10 p-value. Secondly, we
used global significance statistics as a measure of the cumulative evidence for differential
expression of genes in each pathway.

For the ILC tumors, the global significance score and pathway score p-value were in good
agreement and all pathways were significantly different between ILC MF and adjacent normal
tissue at p<0.05. The strongest associated pathways on both measures of association were
PI3K and cell cycle, closely followed by DNA repair, TGFB, RAS, Wnt and MAPK. Apoptosis
and Hedgehog pathways were the least significant by both measures. The largest differences in
absolute fold-change were PI3K (FC = 1098) and RAS (FC = 291) pathways (S2 Table).

Differential genomic architecture of multiple foci within ILC patients

Gene copy number in multiple foci in ILC patients. We assessed copy number in all foci
in 80 known cancer genes. These data (with the limitation of 80 genes) were suggestive that
multiple foci in the same patient are genetically homogeneous. Consistent copy number was
observed across all three punches in each primary focus and between primary foci in each
patient. We observed relatively few changes in gene copy number across MF ILC, the largest
change being amplification of three genes (CCND1, FADD and ORAOV1) mapping to 11q13.3
in two of eleven patients (patients 1 and 11). Copy number data for this region are shown in
Fig 2. 11q13.3 amplification has been previously described in breast cancer,[26, 27] specifically
ILC, [28-30] and in oral squamous carcinoma where it was reported as prognostic of metasta-
sis [31]. Within our dataset, amplifications were identified in CCND1, FADD and ORAOV1I in
all three punches from both foci. Patient 11 showed higher copy number, ranging from 6.01 to
9.40 on the Nanostring platform. qPCR at the CCNDI1 locus confirmed the amplification in all
three punches in both foci, copy number ranging 6.53-9.06. Amplification in patient 1 was
more subtle, ranging 2.30-3.60 on the Nanostring platform and 2.17-3.2 with gPCR.

A third patient (patient 8) showed some evidence of deletion at the CCND1, FADD and
ORAOVI genes in either one or both foci and consistent low level amplification across all three
punches in each focus for AKT3 mapping to 1q43, copy number ranging 2.68-3.16 (mean 2.88,
SD =0.19) and MET mapping to 7q31.2, copy number ranging 2.52-3.93 (mean 3.24,

SD = 0.53). In addition, patient 11 showed consistent low level amplification of ITGB4 at
17q25.1, copy number ranging 3.17-3.66 (mean 3.68, SD = 0.22) and MYC at 8q24.21, copy
number ranging 2.96-3.51 (mean 3.32, SD = 0.22). All copy number changes are shown graph-
ically across all punches for all 11 patients in S2 Fig.
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Table 2. Differential gene expression between MF ILC and adjacent normal tissue.

Gene FC Unadjusted P-value Adjusted P-value qval (FDR) Tumor expression
COL11A1 24.99 1.33E-03 8.97E-01 1.71E-02 T
PKMYTH 11.66 2.30E-05 1.67E-02 2.79E-03 T
COMP 9.23 2.35E-03 1.00E+00 2.29E-02 T
COL1A1 8.40 2.96E-05 2.14E-02 3.08E-03 T
SIX1 7.93 2.15E-03 1.00E+00 2.20E-02 T
BMP8A 6.94 2.01E-03 1.00E+00 2.16E-02 T
ZIC2 5.47 4.55E-03 1.00E+00 3.46E-02 1
CCNE2 5.05 6.68E-03 1.00E+00 4.47E-02 T
UBE2T 5.02 2.04E-05 1.48E-02 2.79E-03 T
MCM2 4.56 2.74E-04 1.93E-01 7.40E-03 T
COL3A1 4.50 5.76E-05 4.16E-02 4.67E-03 T
FNA1 4.36 2.36E-04 1.67E-01 7.11E-03 T
CREBS3LA1 4.30 2.43E-06 1.77E-03 8.87E-04 T
LEFA1 419 9.45E-04 6.46E-01 1.47E-02 T
INHBA 414 2.07E-03 1.00E+00 2.19E-02 T
CDKN2A 4.08 4.68E-03 1.00E+00 3.52E-02 1
COL5A2 3.92 1.50E-05 1.09E-02 2.73E-03 T
E2F1 3.68 2.19E-04 1.56E-01 7.11E-03 1
COL1A2 3.58 4.26E-04 2.97E-01 9.26E-03 T
GATA3 3.50 2.25E-04 1.59E-01 7.11E-03 T
COL5A1 3.37 1.58E-04 1.13E-01 6.97E-03 T
CACNA1D 3.05 2.58E-04 1.82E-01 7.23E-03 T
IL20RB 3.00 6.78E-04 4.66E-01 1.15E-02 T
CDKN2B 2.92 6.62E-05 4.78E-02 4.84E-03 T
CBLC 2.91 3.58E-03 1.00E+00 2.90E-02 T
HIST1H3H 2.76 1.62E-04 1.16E-01 6.97E-03 T
BRIP1 2.49 3.04E-03 1.00E+00 2.64E-02 T
PAX8 2.48 6.26E-03 1.00E+00 4.27E-02 T
POLE2 2.43 1.08E-05 7.90E-03 2.64E-03 T
TGFB3 2.41 1.01E-04 7.22E-02 5.00E-03 T
FENA1 2.38 1.33E-03 8.98E-01 1.71E-02 T
MAPT 2.32 1.32E-03 8.90E-01 1.71E-02 T
CCND1 2.28 3.43E-04 2.40E-01 8.35E-03 7
EZH2 2.18 7.25E-04 4.98E-01 1.19E-02 T
CREB3L4 2.07 3.17E-03 1.00E+00 2.68E-02 1
FIGF 0.06 1.50E-03 1.00E+00 1.80E-02 |
RELN 0.12 4.05E-03 1.00E+00 3.11E-02 !
PROM!1 0.13 1.40E-03 9.44E-01 1.74E-02 i}
SFRP1 0.15 5.02E-03 1.00E+00 3.66E-02 i}
MMP7 0.17 1.52E-03 1.00E+00 1.80E-02 |
NTRK2 0.22 3.62E-04 2.53E-01 8.52E-03 |
LAMB3 0.23 2.24E-03 1.00E+00 2.22E-02 |
SPRY2 0.24 2.13E-04 1.51E-01 7.11E-03 i}
KIT 0.26 2.17E-04 1.54E-01 7.11E-03 i}
CDH1 0.28 4.57E-04 3.17E-01 9.26E-03 l
IL22RA1 0.29 4.86E-03 1.00E+00 3.59E-02 |
LIFR 0.29 4.47E-04 3.11E-01 9.26E-03 !

(Continued)
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Table 2. (Continued)

Gene FC Unadjusted P-value Adjusted P-value qval (FDR) Tumor expression
MET 0.30 5.16E-04 3.57E-01 9.90E-03 |
EGFR 0.30 2.93E-04 2.06E-01 7.63E-03 |
FGF10 0.31 1.07E-03 7.31E-01 1.58E-02 1
ITGB4 0.31 8.07E-05 5.81E-02 5.00E-03 |
FLNC 0.31 5.65E-03 1.00E+00 3.97E-02 !
PAK3 0.32 7.08E-03 1.00E+00 4.66E-02 |
ITGB3 0.35 1.66E-03 1.00E+00 1.90E-02 !
PDGFRA 0.36 5.60E-04 3.87E-01 1.01E-02 |
CACNB2 0.37 1.03E-04 7.36E-02 5.00E-03 !
ITGB8 0.38 1.19E-03 8.05E-01 1.66E-02 l
ZBTB16 0.38 1.78E-03 1.00E+00 2.00E-02 l
FzD7 0.38 1.72E-04 1.23E-01 6.99E-03 l
CREB5 0.41 1.22E-03 8.27E-01 1.68E-02 |
KLF4 0.41 2.17E-03 1.00E+00 2.20E-02 |
TCF7L1 0.43 5.59E-04 3.87E-01 1.01E-02 |
MAML2 0.46 2.43E-04 1.72E-01 7.11E-03 !
MYC 0.46 5.21E-03 1.00E+00 3.71E-02 1
PLD1 0.47 4.84E-04 3.36E-01 9.55E-03 |
GASH1 0.47 6.08E-03 1.00E+00 4.23E-02 |
ITGB6 0.48 3.36E-04 2.36E-01 8.35E-03 l
TGFBR2 0.48 6.75E-04 4.65E-01 1.15E-02 |
CDC14A 0.50 3.32E-03 1.00E+00 2.75E-02 l

Differential gene expression: ILC tumors versus adjacent normal tissue, FDR<0.05 and FC>2 or <0.5, ordered by direction and fold change. FC = fold
change. FDR = false discovery rate.

doi:10.1371/journal.pone.0153411.t002

We then proceeded to correlate gene copy number with gene expression at 11q13.3 using
CCND1 which is common to both NanoString PanCancer expression and cancer copy number
panels (Fig 3). CCNDI gene expression was significantly correlated with copy number, Spear-
man r = 0.57, p<0.0001 when measured across the full sample of eleven patients. When consid-
ering just those patients with abnormal copy number: patient 8 (deletion) patient 1 (low level
amplification) and patient 11 (high level amplification), correlation improves, Spearman
r=0.88.

Differential Pathway Expression in multiple foci within ILC patients. Using two inde-
pendent methods to measure pathway significance, we did not observe any convincing evi-
dence of differential pathway expression between patient foci across this patient group as a
whole, (Fig 1B, S3 Table). However, visual inspection did suggest that the foci in at least 2/11
ILC patients (patients 4 and 7) were heterogeneous at the pathway level for Wnt, PI3K, RAS,
Hedgehog, Transcription Misregulation, TGF-Beta, MAPK, STAT and Apoptosis pathways, S3
Fig. This may reflect a biological difference in that the foci in these patients are of different lob-
ular subtypes. In patient 4, both foci are E-cadherin negative, but the larger focus is of the alve-
olar subtype and the smaller focus is classic lobular subtype. In patient 4, the larger focus is
very weakly positive for E-cadherin and of the trabecular subtype and the smaller focus is E-
cadherin negative and predominantly of the classic lobular subtype with some mixed trabecular
subtype.
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Fig 1. MF ILC pathway significance plots. A. Differential pathway expression in ILC tumor relative to adjacent normal tissue and B. Differential pathway
expression between patient foci. Using the pathway scores, we performed differential expression analysis using the same regression model as in the gene-
level differential expression analysis. These regressions were used to calculate a p-value for the association of each pathway of focus versus adjacent
normal tissue (A) and between patient foci (B). Global significance statistics were calculated for each pathway by measuring the cumulative evidence for the
differential expression of genes in a pathway relative to adjacent normal tissue (A) and between patient foci (B). Global significance for each pathway was
then plotted against linear association pathway scores. There is agreement on both scales with the greatest difference in the PI3K and cell cycle pathways in
ILC foci relative to adjacent normal tissue (A) and little difference in any pathway as measured between foci within patients (B).

doi:10.1371/journal.pone.0153411.9001

Alternatively, for all thirteen pathways in both patient 4 and patient 7, the pathway score of
the smaller focus was always more similar to adjacent normal tissue than the larger focus, 54
Fig. These differences could also arise from cellularity in that the smaller focus was of higher
normal tissue content (immune, stromal or epithelial). To examine cellularity we plotted copy
number for each focus across 80 genes in the Nanostring Cancer CNV panel, S2 Fig. Very few
copy number changes were observed in these patients, but where copy number did deviate
slightly, the second focus (in both cases the classic lobular subtype focus) was closer to adjacent
normal tissue.

Tumor heterogeneity

Our study design of three punches from every tumor allowed us to examine focal heterogeneity
within MF ILC patients and tumor heterogeneity between MF ILC patients, for each gene, with
tumor grade (lobular subtype) as a fixed effect. Variance, percentage heterogeneity of all three
types (patient, foci, intra-tumor) and p-values for all 730 genes are shown in S4 Table.

There was strong evidence of heterogeneity between-foci within-patients. Of the 730 genes
included in the analysis, 466 (64%) had unadjusted heterogeneity (Table 3, pval.F) p-values of
<0.05 (with q-values<0.08), and 432 (59%) had a multiple-testing adjusted p-value of <0.05,
suggesting that there is within-patient focus-to-focus heterogeneity for over half of the studied
genes in addition to any patient-to-patient variability and variability in measures of gene
expression among replicate punch samples from the same foci. There was also evidence of
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Fig 2. 119q13.3 gene copy number in 11 MF ILC patients. Gene copy number was measured in three punches from each focus and a single punch from
matched adjacent normal tissue where available. Ends of each box are minimum and maximum copy number and floating bar shows mean copy number.
Copy number was measured by Nanostring and qPCR platforms. Patients are labelled p1-11 and foci are labelled t1, t2 and t3 in order of size, hence
p1_t1 = patient 1, focus 1. Amplifications are highlighted in red and deletions in blue. A. CCND1 copy number by Nanostring; B. CCND1 copy number by
gPCR; C. FADD copy number by Nanostring; D. ORAOV1 copy number by Nanostring.

doi:10.1371/journal.pone.0153411.9002

heterogeneity from patient to patient in addition to any variability between punches from the
same foci and between foci within patients, although to a lesser extent than we observed for
multiple foci within patients. Of the 730 genes included in this analysis, 292 (40%) had unad-
justed heterogeneity (Table 3, pval.P) p-values of <0.05 (with q-values<0.12). These observa-
tions are very relevant when searching for markers of ILC relative to adjacent normal tissue or
potential prognostic markers based on gene expression from a single specimen, and may be
especially relevant to multifocal disease. This is illustrated in Table 3, where we show a break-
down of heterogeneity measures for CDH1I, and the other nine genes identified with greater
fold changes than CDHI in our tumor versus adjacent normal analysis.

Gene expression measures for CDH1 shows very high evidence of within-patient between-
tumor heterogeneity (73.8% heterogeneity, p = 3.16x10™°). Loss of CDHI (E-cadherin) is an
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doi:10.1371/journal.pone.0153411.g003

important diagnostic feature of ILC. Differential expression analyses of tumor versus adjacent
normal tissue confirmed this finding with an absolute fold change of 0.28 in MF foci versus
adjacent normal tissue (Table 2). In our heterogeneity analysis of CDHI across multiple foci
from patients (Fig 4), the median log2 gene expression is 8.56 (compared to 10.65 in adjacent
normal tissue), but we see that in 5 of the 11 patients there is no overlap of CDHI expression
levels between foci, and in patient 6 there are ~3 orders of magnitude difference between foci.
This observation is further illustrated in our breakdown of heterogeneity in Table 3 showing
the greatest source of heterogeneity for this gene is between foci within patients (73.8%). This
trend is also reflected for the nine other genes that were significantly down-regulated relative to
adjacent normal tissue, with larger fold change than observed for CDH]I.

Discussion

The molecular/genomic aspects of multifocal (MF) invasive lobular carcinoma (ILC) are poorly
understood, despite the fact that these patients have significantly worse outcome than ILC
patients with unifocal disease [11-14]. In this study we used detailed molecular
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Table 3. Sources of heterogeneity in MF ILC differentially expressed genes.

Gene HET.P HET.F HET.IT pval.P pval.F
LAMB3 46.2 1.7 12.1 0.11 1.05E-09
CDH1 0.0 73.8 26.2 1.00 3.16E-09
SPRY2 0.0 75.1 24.9 1.00 3.42E-09
NTRK2 0.0 65.5 34.5 1.00 1.19E-06
FIGF 1.5 62.0 36.5 1.00 4.56E-06
SFRP1 5.5 54.9 39.6 1.00 4.82E-05
KIT 8.6 471 44.3 0.86 3.82E-04
RELN 15.1 42.4 42.6 0.69 7.53E-04
MMP7 19.1 26.1 54.8 0.39 0.04
PROM1 54.3 5.5 40.2 0.01 0.44

HET.P, variability between tumors in different patients, expressed as a percentage of total variability from: multiple punches in each tumor, variability
between foci within patients and variability between tumors in different patients. pval.P, corresponding p-value for heterogeneity between tumors in
different patients. HET.F, variability between foci within patients, expressed as a percentage of total variability. pval.F, corresponding p-value for
heterogeneity between foci within patients. HET.IT, variability within tumors (intra-tumor heterogeneity) expressed as a percentage of total variability.

doi:10.1371/journal.pone.0153411.t003

characterization of multiple foci in a set of 11 MF ILC patients, all of whom were ER+ and
HER2- in both foci.

Our first analyses of differential gene expression of tumor versus adjacent normal tissue
were generally consistent with published studies of ILC [32-35]. We identified 253/730 genes
from canonical cancer pathways that were significantly different, with estimated FDR = 14%.
Loss of E-Cadherin (CDH1) is associated specifically with ILC and is an important diagnostic
feature [32]. In this dataset of 11 MF ILC patients, CDH1 was significantly down-regulated,
p=4.6x10"%, q = 0.0093, absolute fold change 0.28.

Due to small sample size and different platforms used, the overlap of biomarkers (other
than CDH1) between published studies of ILC genes is small. A meta-analysis of five gene
expression studies identified THBS4 as a potential ILC biomarker.[34] THBS4 gene expression
was also up-regulated in our ILC patients relative to adjacent normal tissue (absolute fold
change 2.86, p = 0.027, q = 0.10). Korkola et al [33] defined 11 genes as capable of differentiat-
ing ILCs from ductal carcinoma, of which three (CDH1, SPRY1, THBS4) are present in the
PanCancer pathways panel. All three genes were significantly differentially expressed relative
to adjacent normal tissue in our sample set, p-values 4.6x10™%, 0.018 and 0.027 respectively,
with estimated FDR associated with p<0.027 of 10%, (although we note that SPRYI expression
was lower in ILC relative to adjacent normal in our study and higher in ILC relative to IDC in
the Korkola study). Turashvili et al [35] identified a number of genes as being significantly dif-
ferentially expressed between lobular and ductal carcinoma relative to normal epithelial tissue,
of which one, COL3A1 is also present on the PanCancer pathway panel. In agreement with this
study, COL3A1 is significantly up-regulated in our ILC patients with a fold change of 4.5 and
p = 5.76x10° that remained significant even after adjustment for multiple testing.

The PanCancer pathway panel includes multiple collagen genes and our data also showed
significantly higher expression of COL11A1, fold change 24.99, p = 0.001, COL5A1, fold change
3.91, p = 2.0x10"® and COLIA], fold change 8.40, p = 5.65x10°® in ILC tumor relative to adja-
cent normal tissue. Enhanced expression and deposition of collagens are associated with tumor
development, progression [36-38] and specifically, breast cancer invasion and aggressiveness
[39]. Collagens are the main structural extracellular matrix proteins and perhaps upregulation
of these genes in multifocal ILC is related to the upregulation of THBS4, an extraceullalar
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Fig 4. CDH1 gene expression in 11 ILC patients with multiple foci. Log2 gene expression is plotted for three punches from each foci in each patient. For
each patient, foci are shown in order of size with punches from the largest focus always displayed to the left and punches from the smallest focus (for which
tissue is available) to the right, in the same order as shown in Table 1.

doi:10.1371/journal.pone.0153411.9004

glycoprotein. THBS4 plays an important role in interactions with the extracellular matrix and
has also been shown to be expressed at higher levels in cancer associated stroma relative to nor-
mal stroma, with highest expression in tumors rich in stromal content, (ILC, ER positive low
grade IDC; luminal A and normal-like subtypes) [34]. These findings suggest that increased
THBS4 expression in breast cancer-associated extracellular matrix contributes to the activated
stromal response exhibited during tumor progression and that this may facilitate invasion of
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tumor cells. Our pathway analysis of ILC tumor versus adjacent normal is supportive of these
findings in that the collagen genes and THBS4 map to the PI3K pathway (the most dysregu-
lated pathway in our tumor versus normal dataset). PI3K genes are expressed in both tumor
and stromal cell types, allowing cross-talk between these cell types to modify the surrounding
tumor microenvironment and promote tumorigenesis [40].

Our study identified FIGF, RELN, PROM1, SFRP1, MMP7, NTRK2, LAMB3, SPRY2 and
KIT as being both significantly down-regulated in MF ILC (absolute fold changes 0.06, 0.12,
0.13,0.15,0.17, 0.22, 0.23, 0.24, 0.26, respectively) similar to CDH]I (absolute fold change 0.28)
and significant with q<0.05. Given our study design of ILC tumor versus normal, rather than
ILC versus IDC, it is possible that these genes are not specifically markers of ILC. We note that
Turashvili et al [35] reported expression of SFRPI to be significantly down-regulated in both
ILC and IDC relative to matched normal lobular and ductal tissue respectively, and expression
of MMP7 to be down-regulated in ductal carcinoma only. However, we also note that fold
changes for all nine of these genes are in the same direction and of similar magnitude to CDH1,
a hallmark of ILC. One possibility is that these decreases in expression are related to loss of
CDHI and are potential therapeutic targets in ILC. Four of these genes, (FIGF, RELN, LAMB3
and KIT), map to the PI3K pathway, two of which (FIGF and KIT) map to both PIK3 and RAS
pathways. NTRK2 (Tyrosine kinase B neurotrophin receptor) functions in the MAP kinase
pathway. Its kinase activity reportedly contributes to disease progression by inhibiting anoikis
and promoting epithelial to mesenchymal transition, and PIK3 is an important downstream
target of this cell survival pathway [41, 42]. SPRY2, an inhibitor of RAS/mitogen signaling, has
been previously associated with prognosis of breast cancer [43]. We also examined differential
pathway expression at the level of MF ILC versus adjacent normal tissue. All pathways were
significant at p<0.05. We observed a high correlation between two independent measures of
pathway significance allowing pathways to be ranked in order of significance. The most signifi-
cant pathways were PI3K and cell cycle, although DNA repair, TGFf, RAS, Wnt and MAP
kinase were also highly significant, with PI3K and RAS showing the largest fold change. These
data are also in agreement with current thinking that E-Cadherin-mediated adhesion inhibits
tyrosine kinase receptor signaling; whereas loss of E-Cadherin, a salient feature of ILC, results
in activation of receptor tyrosine kinase signaling pathways [44, 45].

We next sought to systematically examine differences between multiple foci within ILC
patients. Firstly, we examined gene copy number across 80 known cancer genes. Copy number
analysis showed a high level of consistency from multiple punches within each focus and
between foci in the same patient. Two of eleven patients showed gain in copy number at
11q13.3. Amplification of three genes at this locus (CCND1, FADD and ORAOV1) was identi-
fied consistently in both foci of one patient (~8 copies), with a second patient showing small
gain (3 copies) in both foci. Expression of CCNDI was also observed to be significantly up-reg-
ulated at the level of mRNA (q = 0.008) relative to adjacent normal tissue. CCNDI gain has
been previously observed in both ILC and IDC [26, 28-30] with increased frequency in ILC rel-
ative to IDC [29]. The observation of this amplification consistently in both foci (from multiple
sampling of three different punches in each foci), and the lack of other chromosomal aberra-
tions is in line with previous studies of multifocal breast cancer, suggesting that the majority of
multifocal lesions are clonally related [22-25]. We also observed some evidence for deletion of
the same region in a single patient in either one or both foci, although given the difficulty in
reliably estimating small copy number changes (particularly in samples from FFPE material),
this could be due to artifact, and to our knowledge, deletion of CCNDI has not previously been
reported.

Our copy number data suggest that multifocal ILC foci are, for the most part, very similar
with respect to these genomic features. However, our unique study design of genomic data
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from three punches from each tumor in each patient allowed us to specifically separate intra
and inter-tumor heterogeneity within patients and tumor heterogeneity between patients.

This analysis revealed strong evidence of within patient focus to focus heterogeneity for
greater than half of the studied genes in addition to any between patient variability and vari-
ability in gene expression measures among punches from the same tumors after adjustment for
tumor size. Put into the context of CDH1I, a known hallmark of ILC, we observed significant
loss of CDH1 expression across our sample of 11 MF ILC patients relative to adjacent normal
tissue. We also observed, significant heterogeneity (73.8%, q = 9.60x10°®) of CDHI gene expres-
sion between foci within the same patient, with one patient (patient 6) showing lower CDHI
expression by three orders of magnitude in the larger focus. Both foci in this patient were of the
classic lobular subtype, and within the same quadrant (3cm apart). It is possible that this obser-
vation is an artifact due to different amounts of contaminating normal cells. However, our
gene expression analyses showed relatively low level intra-tumor heterogeneity and our copy
number analysis was uninformative: we did not observe any copy number changes <1.5 or
>3.0 for this patient in either focus and our copy number panel of 80 genes did not include
CDHI or any other genes on chromosome 16.

Of the nine genes that were significantly down-regulated in tumor relative to adjacent normal
at greater magnitude than CDH 1, we also observed significant levels of within patient focus to
focus heterogeneity for eight of nine genes. The same genes did not show significant heterogene-
ity between patients, which is likely why they we were able to detect significant difference in our
tumor versus adjacent normal analysis. This opens the question, how many potential disease
markers are missed due to patient heterogeneity in study designs of tumor versus normal, espe-
cially when using single specimens per tumor. Our study gives some estimation of this when
ranking genes by the percentage of patient heterogeneity (54 Table), which results in 13 genes:
PPP2R2C, RACI, IL20RB, MAPT, PPP2CB, MGMT, DDIT4, MAPK3, ZBTB16, FGFR3, LAMAI,
RNF43 and IL23R, with >80% heterogeneity between patient tumors, and very little heterogene-
ity within tumors or between foci within the same patient.

Current literature suggests loss of CDHI and other genes that potentially differentiate
between ILC and IDC, promote epithelial to mesenchymal transition and activation of receptor
tyrosine signaling pathways. Our data demonstrate an additional level of complexity of within
patient foci heterogeneity and between patient tumors that could mask potential prognostic
factors of MF ILC.

The main limitations of these observations are the limited sample size (eleven patients), and
lack of point mutation analysis, as heterogeneity of driver mutations between foci would sug-
gest a source of metastatic potential in MF ILC, that we were unable to address by gene expres-
sion analyses. Despite these limitations, this is the most detailed molecular study to date of MF
ILC patients, all of whom were ER+ and HER2-. The importance of sequencing analyses of
tumor heterogeneity and evolution was recently highlighted in two studies which included
patients with MF ductal carcinoma (but not MF ILC). Desmedt et al [46] observed genomic
heterogeneity between foci in 12/36 patients with MF IDC, despite similar pathological fea-
tures. Yates et al [47] examined two to five foci from each of four patients with MF IDC,
observing mutations in known driver genes that were private to one focus in three of four
patients. They also found many private mutations with high variant allele fractions within indi-
vidual foci, suggesting the occurrence of complete ‘clonal sweeps’ that replaced all other tumor
cells within the focus. Our findings of genomic heterogeneity in MF ILC via gene expression
analyses, multiregion sequencing studies of MF IDC [46, 47] and key questions established
from an International meeting on the extent of tumor heterogeneity [48] suggest further
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exploitation of tumor heterogeneity in MF breast cancer will be crucial to our ability to design
and select effective therapies and curtail treatment resistance.

Supporting Information

S1 Fig. Patient 7, tumor 1: A) Hematoxylin and Eosin staining, trabecular subtype. B) E-cad-
herin staining, weakly positive. C) Cytoplasmic p120 staining. Patient 7, tumor 2: D) Hematox-
ylin and Eosin staining, dominant classic lobular with some mixed trabecular. E) E-cadherin
staining, negative. F) Cytoplasmic p120 staining.

(TIF)

S2 Fig. Copy number plots by chromosome for each patient.
(PDF)

S3 Fig. Pathway dysregulation scores for 11 MF ILC patients. Boxes represent maximum, mini-
mum and mean score observed from 3x1.5mm core punches from each tumor and a single punch
for adjacent normal tissue where available. Patients are labelled p1-p11 and tumors are labelled T1
and T2. Patient 1 has three tumors labelled p1_T1, p1_T2 and p1_T3. Patients 4 and 7 with the
most differences in pathway score between T1 and T2 are highlighted in red and blue respectively.
(PDF)

S4 Fig. Pathway dysregulation scores for patient 4 and patient 7. Each score from 3 core
punches from each tumor and a single punch for adjacent normal tissue. Bars represent maxi-
mum, minimum and median score.

(TIF)

S1 Table. Differential gene expression analysis, tumor versus adjacent normal for 730
genes in the Nanostring PanCancer panel.
(XLSX)

S2 Table. Pathway significance analysis of thirteen cancer pathways in tumor versus adja-
cent normal tissue.
(DOCX)

$3 Table. Pathway significance analysis of thirteen cancer pathways between foci.
(DOCX)

$4 Table. Tumor heterogeneity analysis. This table shows the results of the heterogeneity lin-
ear mixed model analysis. The first column shows the gene name; columns B-D show the esti-
mated standard deviations of the random effects for patient (op), tumor foci (o), intra-tumor
punch sample (ot) respectively. Columns E-G shows the estimated percent heterogeneity cor-
responding to each of these as described in the methods. Column H shows the p-value from
the likelihood ratio test of the null hypothesis of no between patient variation, Hy: op = 0. Col-
umn I shows p-values adjusted for multiple testing using the Holm method, and column ]
shows q-values that are estimates of false discovery rate at each p-value cut-off. Columns K to
M similarly show p-values and g-values corresponding to the test of the null hypothesis of no
within-patient, between foci heterogeneity: Hy: o = 0.

(XLSX)
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